Ammonia as a future clean energy vector and marine fuel: knowledge gaps and ongoing risk studies

Simon Gant Health and Safety Executive (HSE)

Safety and Reliability Society evening talk, 31 January 2023

Research - HSE funded to provide evidence which underpins its policy and regulatory activities **Guidance** - freely available to help people comply with health and safety law

© Crown Copyright HSE 2023

RESEARCH AND GUIDANCE FROM

- Quick introduction to HSE
- UK support for Net Zero technologies
- Ammonia properties
- Previous incidents
- Recent safety and risk studies
- Scientific knowledge gaps

Overview

Introduction to HSE

HSE is the UK regulator for workplace health and safety

- Includes onshore/offshore pipelines, chemical/oil/gas infrastructure, offshore platforms etc.
- Activities: evidence gathering, policy development, consultation, regulation, incident investigation, enforcement
- HSE acts as an enabling regulator, supporting the introduction of new technologies _
- 2,400 total staff
- £230M (\$310M) budget: 60% from Government, 40% from external income

HSE Science and Research Centre, Buxton, UK

- 400 staff, 550 acre test site
- Scientific support to HSE and other Government departments _____ "Shared research" or joint-industry projects co-funded by HSE Bespoke consultancy on a commercial basis

UK Government support for Net Zero

- Net Zero 2050
 - UK Government announced Ten Point plan¹ in November 2020
- Growth of low-carbon hydrogen and CCUS based around
 - Regional hydrogen and CCUS industrial clusters
 - 2. Hydrogen for heating:
 - Government policy decision on hydrogen heating in 2026
 - 2023/4: Neighbourhood trial (300 properties, new PE distribution network, <u>https://www.h100fife.co.uk/</u>) 2025/6: Village trial (1,000 – 2,000 properties, repurposed gas distribution network)

 - By 2030: Town pilot (start of roll-out)
 - Targets of 5 GW of low carbon hydrogen production and 10 Mt carbon capture by 2030
- Other Net Zero ambitions
 - Offshore wind, nuclear, zero-emission vehicles/planes/ships, greener buildings, protecting environment, green finance and innovation

Map data: © 2022 Google

HyNet North West

https://hynet.co.uk

KEY

INITIAL PHASES OF CADENT'S H₂ PIPELINE FUTURE PHASES OF CADENT'S H₂ PIPELINE CO₂ TRANSPORTATION AND STORAGE SYSTEM FUTURE CO₂ PIPELINE CONNECTIONS

INDUSTRIAL CO2 CAPTURE

CO₂ STORAGE

LOW CARBON H₂ PRODUCTION

```
UNDERGROUND H<sub>2</sub> STORAGE
```

INDUSTRIAL H₂ USER

```
FLEXIBLE H<sub>2</sub> POWER GENERATION
```

```
CO<sub>2</sub> SHIPPING
```

 $\rm H_{_2}$ blending for homes and business

H₂ FUELLING FOR TRANSPORT

H₂ FROM OFFSHORE WIND

H₂ FROM SOLAR AND WIND

KEY

Phase 2 shortlisted projects

PROJECTS IN TEESSIDE

INDUSTRIAL CARBON CAPTURE **CF Fertilisers Billingham Ammonia CCS** Norsea Carbon Capture **Redcar Energy Centre** Tees Valley Energy Recovery (TVERF) **Teesside Hydrogen CO2 Capture** Lighthouse Green Fuels STV 1+2 Energy from Waste Carbon Capture STV 3 Energy from Waste Carbon Capture Teesside Green Energy Park Limited

REDCAR MIDDLESBROUGH

DARLINGTON

UP TO 10 MTPA CO₂ CAPTURED

HYDROGEN bpH2Teesside H2NorthEast

POWER **Net Zero Teesside Power** Whitetail Clean Energy Alfanar CCGT Teesside

© Crown Copyright HSE 2023

https://eastcoastcluster.co.uk

EAST CO2AST CLUSTER

111

145km

103km

SCUNTHORPE

HULL

LEEDS

SHEFFIELD

PROJECTS IN THE HUMBER

GRIMSBY

17+ MTPA CO₂ CAPTURED

BIOENERGY WITH CCS North Yorkshire Power Station

INDUSTRIAL CARBON CAPTURE Humber Zero - Phillips 66 Humber Refinery **Prax Lindsey Oil Refinery Carbon Capture** ZerCaL250

Altalto Immingham waste to jet fuel North Lincolnshire Green Energy Park Saint-Gobain Glass Carbon Capture

HYDROGEN

Hydrogen to Humber (H2H) Saltend Uniper Humber Hub Blue Project

POWER

Keadby 3 Power Station C.GEN Killingholme VPI Humber Zero

Hydrogen: Present and Future

the use of hydrogen from clean energy sources in the coming years

The Economist

https://www.economist.com/briefing/2021/10/09/creating-the-new-hydrogen-economy-is-a-massive-undertaking

Net Zero carbon dioxide emissions by 2050 will likely require a significant increase in

To transport this hydrogen, ammonia is emerging as a potential hydrogen vector

Hydrogen and Ammonia Properties

Compared to hydrogen, ammonia is:

- 1. Easier to liquefy
- 2. Higher volumetric energy density

	Hydrogen (H ₂)	Ammo (NH ₃)
Molecular weight ¹	2 g/mol	17 g/m
Boiling point ¹	-253°C	-33°C
Energy density ²	9 MJ/litre (liquid) 6 MJ/litre (gas 700bar)	16 MJ/
Lower flammability limit	4 %v/v	15 %v/
Upper flammability limit	75 %v/v	28 %v/
Minimum ignition energy ²	0.01 mJ	8 mJ
Laminar burning velocity ²	3.5 m/s	0.07 m
Toxic AEGL-3 10 mins ³	-	2,700 p

¹ <u>https://encyclopedia.airliquide.com/</u>

² https://www.ammoniaenergy.org/articles/ammonia-for-power-a-literature-review

³ Life-threatening health effects or death <u>https://www.epa.gov/aegl/ammonia-results-aegl-program</u>

- 3. More difficult to burn
- 4. Toxic

Pressure-liquefied above 8.5 bara (at 20°C) Temperature-liquefied below -33°C (at atmos. pressure)

Ammonia as a Clean Energy Vector

- For bulk transport by ship over large distances: cheaper to produce ammonia from hydrogen (NH₃ Haber-Bosch process) and transport liquefied ammonia than to transport liquid hydrogen¹ Cheaper to import green hydrogen from Middle East as ammonia than produce green hydrogen in the UK?² Stored ammonia could be cracked to hydrogen and fed into gas grid, or used in fuel cells to produce electricity, with waste nitrogen released to air⁴ (cracking ammonia takes >13% of stored energy)⁵ Ammonia could also be used for balancing peak electrical demand when renewable energy sources
- cannot meet demand and for seasonal energy storage (like LNG peak shaving)⁵
- Ammonia currently produced/stored/shipped in large quantities (180 Mt produced, 18-20Mt shipped)⁵ Existing technologies, standards, procedures available for bulk handling of ammonia

the viability of shipping LH₂, e.g., Suiso Frontier first shipment of LH₂ from Australia to Japan in Feb 2022

- 3 https://www.ammoniaenergy.org/articles/ammonia-for-power-a-literature-review/
- 4 https://www.gencellenergy.com/
- 5 https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/May/IRENA_Innovation_Outlook_Ammonia_2022.pdf

- For comparison, 30-40% of the energy content of hydrogen is required to liquefy it², although research on liquid hydrogen (LH₂) is ongoing on to prove

¹ https://doi.org/10.1039/D1SE00345C https://doi.org/10.1016/j.isci.2021.102903

² https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf

Ammonia as a Clean Energy Vector

Gas Supply

05/26/2022 LEHIGH VALLEY, PA; MUSCAT, OMAN; AND RIYADH, KINGDOM OF SAUDI ARABIA

Air Products, OQ and ACWA Power Sign Joint Development Agreement **Toward World-Scale Green** Hydrogen-Based Ammonia **Production Facility in Oman**

Large-Scale Green Hydrogen for the UK: Air Products and Associated **British Ports partner on Renewable**

Air Products and ABP are working together to bring the new green hydrogen facility to Hydrogen Production the Port of Immingham. The location will provide the required maritime infrastructure and offers good proximity to markets and the required utilities. ABP will invest in new infrastructure with a new jetty to service the import and export handling of liquid bulk products. In addition to handling green ammonia, the jetty is being designed so that it Air Products (NYSE:APD) and Associated British Ports (ABP) announced today their can accommodate other cargoes connected to the energy transition, including the intention to partner in bringing the first large scale, green hydrogen production facility to import of liquified carbon dioxide (CO2) from carbon capture and storage projects for the UK. sequestration in the North Sea – thereby playing a significant role in the UK's energy The facility would import green ammonia from production locations operated by Air transition.

Products and its partners around the world. This would be used to produce green hydrogen, which would decarbonise hard-to-abate sectors such as transport and industry.

Air Products, ACWA Power and **NEOM Sign Agreement for \$5 Billion Production Facility in NEOM** Powered by Renewable Energy for **Production and Export of Green** Hydrogen to Global Markets

https://www.airproducts.com/news-center

08/30/2022 LEHIGH VALLEY, PA AND LONDON, THE UNITED KINGDOM

Immingham Green Energy Terminal

Immingham – the UK's leading port complex decarbonising energy

NEWS CONTACT US ABOUT HYDROGEN SOLUTIONS~

Agreement to Develop Clean Energy Hub for Shoreham Port, Sussex

• To deliver a third phase of hydrogen supply growth, H2 Green plans an ammonia importation facility. Ammonia is a medium for international hydrogen transport that can connect Shoreham to large-scale, lowcost, green energy projects worldwide.

Ammonia as a Clean Energy Vector

Facilitating hydrogen imports from non-EU countries

October 2022

The European Commission recently published its REPowerEU plan which aims to rapidly reduce dependence on Russian fossil fuels and accelerate the green transition. Hydrogen plays a key role in this plan. A total of 20 Mt of hydrogen is targeted by 2030 – 10 Mt via domestic production and up to 10 Mt via imports. To meet the hydrogen import target, infrastructure, regulation, and support mechanisms must be fit for purpose. However, this is currently not the case. This paper provides insights on the existing challenges of imports and how they can be overcome.

Table 2: List of planned ammonia import terminals in Germany, Belgium and the Netherlands

Terminal

RWE Ammonia Ter Brunsbüttel, Germ

Uniper Wilhemlsh

Fluxys Advario Ant Ammonia Termina

Horisont Koole Am Rotterdam, Nether

Gasunie ACE Term Rotterdam, Nether

Total

	Start year	Ammonia imports capacity (Mt)	Imported hydrogen mass (Mt) ³³
rminal nany ³⁴	2026	2	0.27
aven, Germany ³⁵	2026	3	0.41
twerp Green a, Belgium ³⁶	2027	1.2	0.16
nmonia Terminal, rlands ³⁷	2026	1	0.14
inal, rlands ³⁸	2026	1.2	0.16
		8.4	1.14

Figure 7: Ammonia terminal components⁴⁰

https://gasforclimate2050.eu/wpcontent/uploads/2022/10/2022_Facilitating _hydrogen_imports_from_non-

EU_countries.pdf Report discusses repurposing of existing LNG import terminals for ammonia

Growth in Green Ammonia Production Projects

"The world needs clean energy and hydrogen is a key to meeting this need. Green and blue ammonia is the critical enabler for storage and transport of hydrogen and thus has a major role to play. Our commitment to decarbonize the world's largest ammonia production network positions CF Industries at the forefront of clean ammonia and hydrogen supply."

Key project data

Location: Markoppneset, Finnmark, Norwo Investment decision: end 2022 Start-up year: 2025 Gas supply: Melkøya LNG plant Technology: Auto-thermal reforming (ATR) End-product: Clean ammonia Yearly production: Above 1 million tons CO2 storage: Polaris, offshore Finnmark Future plans: train 2 and train 3

https://www.horisontenergi.no/wpcontent/uploads/2021/06/Barents-Blue-Project-Flyer-2021.pdf

https://www.cfindustries.com/who-we-are/clean-energy-economy-opportunity

Nutrien Announces Intention to Build World's Largest Clean Ammonia Production Facility

Evaluating existing Geismar, Louisiana site to produce 1.2 million tonnes of clean ammonia annually

SASKATOON, Saskatchewan--(BUSINESS WIRE)-- Nutrien Ltd. (TSX and NYSE: NTR) announced today that it is evaluating Geismar, LA as the site to build the world's largest clean ammonia facility. Building on the company's expertise in low-carbon ammonia production, clean ammonia will be manufactured using innovative Queensland's deputy premier Steven Miles said the project could create more than 550 jobs technology to achieve at least a 90 percent reduction in CO₂ emissions. The project will proceed to the front-end engineering design (FEED) phase, with a final during a phased construction and about 140 ongoing jobs. Photograph: Darren England/AAP investment decision expected to follow in 2023. If approved, construction of the approximately US\$2 billion facility would begin in 2024 with full production expected by The Queensland government has granted coordinated project status to a 2027.

https://www.nutrien.com/investors/news-releases/2022-nutrien-announces-intentionbuild-worlds-largest-clean-ammonia

Tony Will President and Chief Executive Officer CF Industries

Queensland advances green hydrogen and ammonia project to be powered by

\$4.7bn proposal to build a green hydrogen and ammonia plant in Gladstone, where climate transition plans are being pitched as saviour projects.

https://www.theguardian.com/australianews/2022/apr/12/queensland-advances-green-hydrogen-andammonia-project-to-be-powered-by-renewables

With project HEGRA (Herøya Green Ammonia), Yara aims to electrify and decarbonize the ammonia plant in Porsgrunn, Norway. The project will reduce CO2-emissions by 800,000 tonnes annually.

https://www.yara.com/this-is-yara/yara-clean-ammonia

International Policy Drivers for Ammonia as Shipping Fuel

- Shipping industry responsible for 2-3% of the world's total CO_2 emissions¹
 - And by 2050 these emissions are projected to increase by 90-130% from 2008 levels, assuming no new policies⁴
- International Maritime Organization (IMO) adopted in 2018 an initial greenhouse gas strategy²
 - Reduce CO₂ emissions by at least 40% by 2030 and 50% by 2050 compared to 2008 emissions Dates when measures come into force will be defined in 2023

 - Recognition that global introduction of alternative fuels and/or energy sources will be necessary
- New legislation from European Commission¹ adopted in July 2021
 - Slow progress by IMO triggered the EU to take action on maritime transport
 - Emissions trading scheme extended to maritime transport and energy taxes revised ____
 - Max limit set on greenhouse gas content of energy used by ships calling at EU ports
 - Support for alternative fuel infrastructures at maritime and inland waterways, and supply of renewables
- COP26 Clydebank Declaration³, November 2021
 - Aim for six zero-emission green maritime routes between international ports by mid-2020s
 - Signatory countries committed to support establishment of green shipping corridors
 - 24 signatories including: USA, UK, Australia, Netherlands, France, Italy, Denmark, Norway, Singapore
 - 1 https://ec.europa.eu/clima/eu-actions-transport-emissions/reducing-emissions-shipping-sector en
 - 2 https://www.imo.org/en/MediaCentre/HotTopics/Pages/Reducing-greenhouse-gas-emissions-from-ships.aspx

- 3 https://www.gov.uk/government/publications/cop-26-clydebank-declaration-for-green-shipping-corridors
- 4 https://climateactiontracker.org/sectors/shipping/imo-policies-action/

Mission Innovation: Zero-Emission Shipping

MEMBER COUNTRIES

Mission Innovation

- Global initiative of 22 countries and EU to catalyse action and investment in clean energy
- Launched alongside the Paris Agreement in 2015

MISSION INNOVATION BEYOND 2020

Challenges and opportunities

A paper by the MI Secretariat on the clean energy innovation landscape for input into discussions about the role and priorities of Mission Innovation beyond 2020

> Shipping is likely to favour direct drop-in alternatives for existing engines, with hydrogen (e.g. stored in liquid organic hydrogen carriers) and ammonia likely to dominate in the long-term.58

The Zero-Emission Shipping Mission is an ambitious In terms of **Safety & operational risk management**, the analysis alliance between countries, the private sector, pinpoints the safety concerns and considerations to be prioritized for research institutes, and civil society to develop, the respective fuels, including: mitigating concerns on the flammability; demonstrate, and deploy zero-emission fuels, low activation and ignition energy of hydrogen; safety considerations ships, and fuel infrastructure together by 2030 associated with the bunkering and handling of ammonia; NO_x and make zero-emission ocean going shipping standards associated with biofuels; methane emissions standards; the natural choice for ship owners. This will lay the foundation for a zero-emission shipping future and accelerate progress towards net zero pathways.

http://mission-innovation.net/wp-content/uploads/2022/04/Zero-Emission-Shipping-Mission-Roadmap-1-1.pdf

NB. Concerns about ammonia as a "drop-in" fuel, due to toxic risks

© Crown Copyright HSE 2023

http://mission-innovation.net/wp-content/uploads/2019/12/B2020-paper-publish-FINAL.pdf

Announcement of zero-emission shipping roadmap by Jennifer Granholm, US Secretary of Energy, June 2021

UK Policy Drivers and DNV Forecast

By 2025 we expect that:

- All vessels operating in UK waters are maximising the use of energy efficiency options. All new vessels being ordered for use in UK waters are being designed with zero emission propulsion capability.
- Zero emission commercial vessels are in operation in UK waters.
- . The UK is building clean maritime clusters focused on innovation and infrastructure associated with zero emission propulsion technologies, including bunkering of low or zero emission fuel.

July 2019

By 2035 we expect that:

- v. The UK has built a number of clean maritime clusters. These combine infrastructure and innovation for the use of zero emission propulsion technologies. Low or zero emission marine fuel bunkering options are readily available across the UK.
- Under the assumptions made in the research, ammonia is estimated to be more cost-effective than methanol or hydrogen for most ship types.

https://assets.publishing.service.gov.uk/government/uploads/system/uploads /attachment_data/file/815664/clean-maritime-plan.pdf

CCC is an independent statutory body established under Climate Change Act 2008 that advises UK Government ministers

The Sixth Carbon Budget

- Shipping
- **Options for reducing emissions**. Mitigation options considered include improvements in vessel efficiency (including electricity), and use of zerocarbon fuels (principally ammonia made from low-carbon hydrogen) to displace fossil marine fuels.

© Crown Copyright HSE 2023

https://www.theccc.org.uk/wp-content/uploads/2020/12/Sector-summary-Shipping.pdf

ltis

hard to identify clear winners among the many different fuel options across all scenarios, but ammonia (electrobased and 'blue') and bio-based methanol are the most promising carbon-neutral fuels in the long run.

https://eto.dnv.com/2021/maritime-forecast-2050/about

Growth in Ammonia for Shipping Fuel and Bunkering

Sembcorp Marine granted AiP for ammonia bunkering vessel

By Julian Atchison on January 20, 2022

A consortium led by Sembcorp Marine has been granted AiP by the American Bureau of Shipping for a new ammonia bunkering vessel design. Sembcorp and its subsidiary LMG Marin (who was recently engaged by Grieg Maritime and Wartsila to design the MS Green Ammonia) were responsible for the design phase, which passed a rigorous HAZID assessment with support from the American Bureau of Shipping. Consortium partners also include Mitsui O.S.K. Lines and Itochu, two organisations with growing ammonia interests in Singapore.

The new announcement is one of a number of ammonia & ammonia-ready bunkering designs in progress:

- In March 2021 Korean Register granted AiP for an 8K ammonia bunkering vessel (dual-fuel with marine heavy oil).
- In June 2021 Oceania and Kanfer agreed to develop the world's first ammonia-ready bunkering vessel. It will initially run on & transport LNG, but be able to be modified to be powered by & carry ammonia as a bunker fuel.
- In September 2021 Azane Fuel Solutions received funding from the Norweigan government to build the world's first floating ammonia bunker terminal.
- And just last month, The Korean Green Ammonia Shipping/Bunkering Consortium won approval for two designs. including a 38,000 m³-class ammonia transport/bunkering vessel.

16

Click to learn more, Visualisation of the new ammonia bunkering vessel design. Source: Sembcorp.

shipping

Wärtsilä Corporation, Trade press release, 30 June 2020 at 10:01 UTC+2

https://www.wartsila.com/

https://www.ammoniaenergy.org/articles/sembcorpmarine-granted-aip-for-ammonia-bunkering-vessel/

MAN Energy Solutions is developing a fuel-flexible, two-stroke ammonia engine as a key technology in the maritime energy transition

Green ammonia is among several synthetic fuels key to establishing a greener shipping industry in the near future. MAN Energy Solutions aims to have a commercially available two-stroke ammonia engine by as early as 2024, followed by a retrofit package for the gradual rebuild of existing maritime vessels by 2025.

https://www.man-es.com/discover/two-stroke-ammonia-engine

FINANCIAL TIMES Ammonia flagged as green shipping fuel of the future

Marine operators are looking to clean up their act

Adaptive behaviour: the Viking Energy supply vessel which is planned to run on ammonia fuel cells

Charlotte Middlehurst MARCH 30 2020

https://www.ft.com/content/2014e53c-531f-11ea-a1ef-da1721a0541e

D 11 🖶

World's first full scale ammonia engine test - an important step towards carbon free

Growth in Green Ammonia Production Projects

- Possible green ammonia production locations:
 - Saudi Arabia
 - Oman
 - Australia
 - Chile
 - Argentina
 - Brazil
 - China
 - USA
 - Morocco
 - Norway

Trade-off between local production capacities and international production and transport costs

Green ammonia as a spatial energy vector: a review

Nicholas Salmon 💿 and René Bañares-Alcántara 💿 *

http://dx.doi.org/10.1039/d1se00345c

Article

Optimization of green ammonia distribution sy for intercontinental energy transport

Nicholas Salmon,¹ René Bañares-Alcántara,^{1,2,*} and Richard Nayak-Luke¹

https://doi.org/10.1016/j.isci.2021.102903

						Full load hour		Electrolyzer	NH3
				PLCOA	Rated wind	equivalent	HB load	rated power	synthesis
Location	Country	Latitude	Longitude	(USD/t)	fraction (%)	per year	factor	(MW)	(MW)
Patagonia (Argentina) (Armijo and Philibert, 2020)	Argentina	-44.5	-71	383	53	2850	67	930	67
Callide (CSIRO, 2020)	Australia	-24.5	150.5	375	20	2375	78	2,310	79
Eighty Mile Beach (Asian Renewable Energy Hub, 2020)	Australia	-20	120.5	551	12	1580	67	2,010	77
Port of Pecem (Bellini, 2021)	Brazil	-3.5	-39	329	0	2442	46	2,150	121
Calama Valley (Armijo and Philibert, 2020)	Chile	-22	-69	378	7	1684	63	2,450	90
Patagonia (Chile) (Armijo and Philibert, 2020)	Chile	-52.5	-71	298	84	4845	72	1,160	84
Taltal (Armijo and Philibert, 2020)	Chile	-25	-70	309	23	2370	76	2,220	80
Eqianqi (Keating, 2020)	China	41	109	352	0	2442	47	1,890	107
Ain Beni Mathar (Ennassiri et al., 2019)	Morocco	34	-2	350	0	2106	47	1,730	99
Boujdour (Ennassiri et al., 2019)	Morocco	26	-14	289	27	2788	79	1,500	67
Laayoune (Ennassiri et al., 2019)	Morocco	27	-13	273	41	3349	78	1,580	76
Ouarzazate (Ennassiri et al., 2019)	Morocco	31	-7	350	11	1946	69	1,920	78
Tarfaya (Ennassiri et al., 2019)	Morocco	28	-12.5	291	35	2935	75	1,620	76

proposals for the use of those sites.

у	S'	t	е	n	Π	S
-						

Recent Safety Studies

Working together for a safer world

Hydrogen and Ammonia Infrastructure

Safety and Risk Information and Guidance

Report for: Ocean Hyway Cluster

Table 5.1 – Coarse assessment of risk outside fence from simulated releases

Hazard distance	Fatality potential			Injury potential				
Scenario	Full bore	10%	1%	Full bore	10%	1%		
Refrigerated NH ₃	25m	25m	10m	280m	250m	220m		
Compressed NH ₃	~2,000m	270m	30m	>10,000m	~2,000m	200m		
Liquid H ₂	~300m	25m	N/A	~1,000m	300m	N/A		
Compressed H ₂	~30-40m	~30-40m 20m		~300m	200m	50m		
LNG	>200m	35m	N/A	>200m	35m	N/A		

https://static1.squarespace.com/static/5d1c6c223c9d400001e2f40 7/t/5eb553d755f94d75be877403/158894183

External safety study bunkering of alternative marine fuel for seagoing vessels

Port of Amsterdam

Report No.: 10288905-1, Rev. 0 Document No.: 11J5ON0R-1 Date: 2021-04-19

Table 0-2: Maximum distance from bunker hose to focus area boundary

		Focus area distance (m)						
Fuel	Flow rate	Fire	Explosion	Toxic				
LNG	400 m ³ /h (-146 °C)	249	274	_ [1]				
LNG	400 m ³ /h (-159 °C)	330	295	_ [1]				
Methanol	400 m ³ /h	102	_ [1]	22				
Ammonia (refrigerated)	400 m ³ /h	_ [1]	_ [1]	1446				
Ammonia (pressurized)	400 m ³ /h	_ [1]	_ [1]	1478				
Hydrogen (liquid)	400 m ³ /h	239	283	_ [1]				
Hydrogen (gaseous)	3 t/h	87	_ [1]	_ [1]				
Hydrogen (gaseous)	700 bar (60 g/s)	55	_ [1]	_ [1]				
Hydrogen (gaseous)	1000 bar (60 g/s)	55	_ [1]	_ [1]				
LNG	1000 m ³ /h	448	229	_ [1]				
Methanol	1000 m ³ /h	154	_ [1]	34				
Ammonia (refrigerated)	1000 m ³ /h	_ [1]	_ [1]	2624				
Ammonia (pressurized)	1000 m ³ /h	_ [1]	_ [1]	2060				
Hydrogen (liquid)	1000 m ³ /h	324	338	_ [1]				

[1] The justification as to why no distances are calculated can be found under Table 7-3 in Section 7.2

https://sustainableworldports.org/wp-content/uploads/DNV-POA-Final-Report_External-safetystudy-bunkering-of-alternative-marine-fuels-for-seagoing-vessels_Rev0_2021-04-19.pdf

-

Previous ammonia incidents

Pressure-liquefied ammonia truck release, 19 tonnes, Houston, Texas (1976) 6 dead, 78 hospitalised plus 100 injured

https://www.chron.com/news/houston-texas/houston/article/In-1976-an-ammonia-truck-disaster-claimed-the-12906732.php

Overflow from 40,000 tonne cryogenic liquid ammonia tank, Blair, Nebraska (1970), no serious injuries © Washington County Enterprise,1970)

Previous Ammonia Incidents

© Beach Park Fire Department, Illinois, 2019 <u>https://www.chicagotribune.com/suburbs/lake-county-news-sun/ct-Ins-ammonia-spill-no-charges-st-0626-20190625-ikztowsrhfhwhgym3lryjk4v2m-story.html</u>

Pressure-Liquefied Ammonia Release Experiments

Desert Tortoise

- Tests conducted in 1983 at DOE Nevada Test Site
- Release rates of 81 133 kg/s
- 10 41 tonnes of ammonia released
- Dispersion measurements at 100 m and 800 m
- Largest tests to date on ammonia

FLADIS

- Tests conducted in 1993-4 at Landskrona, Sweden
- Release rates of 0.25 0.55 kg/s
- Dispersion measurements at 20 m, 70 m and 240 m (transition from dense to passive dispersion)

Photo © Kenneth Nyren, FOA Source: Hall, Walker & Butler (1999)

Pressure-Liquefied Ammonia Release Experiments

INERIS, 1996-1997 (Bouet, 1999)

- CEA/CESTA test site near Bordeaux, France
- 15 ammonia releases of 2-3 tonnes, discharge rate 3-4 kg/s
- Release orientations: horizontal, vertically-down, annular, with/without impingement
- Six types of ammonia sensors on 150 masts at different heights on arcs from 20 m to 1700 m
- Mitigation: effect of water sprays

Jack Rabbit I, 2010

- Dugway Proving Ground, Utah, USA
- Five 1 2 ton ammonia releases vertically downwards from 2 ____ m AGL into 2 m deep, 50 m diameter depression
- 62 ammonia sensors in rings from 50 m to 2,500 m
- Some rainout and absorption of ammonia into desert playa
- https://www.uvu.edu/es/jack-rabbit/

Image © INERIS. Source: Bouet (1999)

Image © CSAC, DHS. Source: Storwold et al. (2011)

Experimental Data for Liquid Ammonia Spills on/into Water

Only one experimental waterborne ammonia spill dataset, by Raj et al. (1974) PREDICTION OF HAZARDS OF SPILLS OF ANHYDROUS AMMONIA ON WATER

PREPARED FOR	ARTHUR	D.	LITTLE,	INCORPORATED
Coast Guard	March	197	74	

Raj, P.K., Hagopian, J., and Kalelkar, A.S.

The vapor puff formed is very buoyant and rises into the air as it travels downwind. The rate of rise depends on the wind velocity. Under low wind conditions the cloud forms a characteristic mushroom cloud before dispersing. The path of the cloud can be estimated with reasonable accuracy by existing plume theories. Because of the rapid rise in low wind, the toxic hazard at ground level is smaller for low wind than for high wind.

https://apps.dtic.mil/sti/pdfs/AD0779400.pdf

Laboratory Experiments 1.3.1

- 1.3.1.1 Surface Spills
- 1.3.1.2 Underwater Release
- $\frac{1}{2}$ US gallon (2 litre)

URE 5-2 FARTIAL SIDE VIEW OF THE SPILL PLATFORM AND RAFTS

- Intermediate-Scale Experiments 1.3.2
 - 1.3.2.1 Surface Spills
 - 1.3.2.2 Underwater Release
- 1.3.3 Large-Scale Experiments
 - 1.3.3.1 Surface Spills
 - 1.3.3.2 Underwater Release

5 US gallon (20 litre) in swimming pool

50 US gallon (0.2 m^3) in lake

Ammonia ship capacities typically 30,000 – 80,000 m³ (Source: <u>http://www.liquefiedgascarrier.com</u>)

Experimental Data for Liquid Ammonia Spills on/into Water

SAFETY AND

RELIABILITY

Concluded that further experiments are needed

CRITICAL REVIEW OF THE USCG REPORT BY RAJ ET AL (1974) ON SPILLS OF LIQUID ANHYOROUS AMMONIA ON TO WATER, WITH AN ALTERNATIVE ASSESSMENT OF THE EXPERIMENTAL RESULTS

R. F. Griffiths

January 1977

© Crown Copyright HSE 2023

HSE Report by Griffiths (1977) critical of conclusions drawn from Raj et al. (1974) tests "... does not provide the information needed to perform hazard assessments of LNH₃ releases on water"

SUMMARY

This report is principally devoted to a criticism of experiments performed by Raj et al (Reference 10) in which it was demonstrated that spills of LNH3 (liquid anhydrous ammonia) on to water from refrigerated storage tanks result in releases of ammonia to the atmosphere. Raj et al concluded that such releases are adequately described in terms of a buoyant plume rise model, in which it is assumed that the ammonia is released as a pure undiluted vapour.

This conclusion is challenged on the grounds that it is incompatible with the experimental measurements. An alternative interpretation of the data is proposed which is shown to be consistent with the observed behaviour. In this scheme the ammonia is considered to be released as a plume containing both vapour and liquid droplet aerosol, by virtue of which it is rendered non-buoyant.

The difficulties inherent in providing a rigorous description of such a release are circumvented by use of a simplified model of the dispersion behaviour, which is used to calculate downwind ground level concentrations (GLC) of ammonia vapour. Comparison calculations are performed to demonstrate that the hazard ranges for a given consequence are significantly greater if the release is non-buoyant.

It is concluded that the study performed by Raj et al does not provide the information needed to perform hazard assessments for LNH3 releases on to water, and that further experimental studies are required.

Scientific Knowledge Gaps

- HSE and DSTL coordinated a European expert elicitation exercise in 2020-2021
 Aim: to identify knowledge gaps that could be examined in future large-scale
- Aim: to identify knowledge gaps that conduct dispersion experiments
- Participants: Aria, BAM, BP, CEA, CERC, CNR, Demokritos, DNV, EDF, FFI, FMI, FOI, Gexcon, GT Science & Software, INERIS, Inovyn, JRC, Met Office, PHE, RIVM, Shell, Syngenta, TNO, VKI

Scientific Knowledge Gaps

- Knowledge gaps exercise run in parallel USA, coordinated by Steve Hanna
- Joint paper from USA-EU analysis published in 2021
- https://dx.doi.org/10.1002/prs.12289

Received: 19 March 2021	Revised: 9 June 2021	Accepted: 17 June 2021
-------------------------	----------------------	------------------------

DOI: 10.1002/prs.12289

ROCESS SAFETY

ORIGINAL ARTICLE

Gaps in toxic industrial chemical model systems: Improvements and changes over past 10 years

| Thomas Mazzola² | Joseph Chang³ Steven Hanna¹ 💿 Thomas Spicer⁴ 🗅 Simon Gant⁵ | Rachel Batt⁵

RESEARCH AND GUIDANCE FROM

¹Hanna Consultants, Kennebunkport, Maine, USA

²DTRA Reachback A&AS Support, SAIC, Lorton, Virginia, USA

³Engineering and Applied Sciences, RAND, Arlington, Virginia, USA

⁴Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas, USA

⁵Fluid Dynamics Team, Risk and Human Factors Group, HSE Science and Research Center, Health and Safety Executive, Buxton, UK

Correspondence

Steven Hanna, Hanna Consultants, 7 Crescent Ave., Kennebunkport, ME 04046, USA. Email: stevenrogershanna@gmail.com

Funding information

Defense Threat Reduction Agency; Department of Homeland Security, Grant/ Award Number: N/A; Health and Safety Executive

Abstract

To assess the hazards of the releases of toxic industrial chemicals (TICs) to the atmosphere, comprehensive model systems are often used, which begin with the scenario definition and end with an estimate of health risk. In 2008 and 2010, the US Department of Homeland Security and Defense Threat Reduction Agency sponsored reports that identified knowledge gaps in TIC modeling. The current paper discusses which of the knowledge gaps were satisfactorily resolved in the past 10 years by new theoretical and experimental research, such as the 2010 and 2015-2016 Jack Rabbit field experiments. For example, the linked source emissions and transport and dispersion (T&D) models have been shown, in comparisons with Jack Rabbit II observations, to not have large mean biases. Consequently, the T&D models are less likely to be the cause of model system overpredictions of casualties observed after large TIC accidental releases, such as the Festus, Macdona, and Graniteville chlorine railcar incidents. It may be that the deposition models and/or the health effects models still need improvement. In addition to comments on the knowledge gaps identified 10 years ago, a few new knowledge gaps are addressed, such as indoor T&D and deposition, and estimating the magnitude of the saturation deposition value for various substrates and chemicals.

KEYWORDS

anhydrous ammonia, chlorine, dense gas dispersion, hazards analysis, health risk, Jack Rabbit II field experiment, TIC

Jack Rabbit II (2015 – 2016)

Images © DHS S&T CSAC and Utah Valley University https://www.uvu.edu/es/jack-rabbit/

Jack Rabbit III (2021 – ongoing)

JR III Goal and Objectives

Goal: Conduct studies and experiments needed to fill critical knowledge and data gaps and transfer technologies to safeguard the nation from chemical threats

Science and Picknology

Respond

Provide technologies to Advance **Detection and** Protective Equipment to Reduce Casualty

Recover

Develop Countermeasure

Cultivate Decontamination Strategies

Uphold

Safeguard Critical infrastructure and support critical function

Devise Hazard Mitigation Approaches

JRIII Initial Modelling Exercise (2021-2022)

- Aims: run a model inter-comparison exercise to evaluate the performance of atmospheric dispersion models using data from previous ammonia release experiments
 - To understand the accuracy of models that may be used to design the Jack Rabbit III trials, e.g. to design the JRIII sensor array
 - To identify important model input parameters that we may need to carefully assess or measure in the trials

Fig. 15. Desert Tortoise 2 (upwind wide angle camera) Time = 230s.

FLADIS

Participants in the JRIII Initial Modeling Exercise

#	Organization	Model			Des	sert Torte	oise	FLADIS				
			Empirical nomogram/ Gaussian plume	Integral	Gaussian Puff/ Lagrangian	CFD	1	2	4	9	16	24
1	Air Products, USA	VentJet										
2		AUSTAL										
3	- BAM, Germany	VDI										
4		PHAST v8.6										
5	DGA, France	Code-Saturne v6.0										
6	DNV, UK	PHAST v8.61										
7	DSTL, UK	HPAC v6.5										
8	DTRA, ABQ, USA	HPAC v6.7										
9	DTRA, Fort Belvoir, USA	HPAC										
10	EDF/Ecole des Ponts,	Code-Saturne v7.0										
11	France	Crunch v3.1										
12	Equinor, Norway	PHAST v8.6										
13	FFI, Norway	ARGOS v9.10										
14	FOI, Sweden	PUMA										
15	Gexcon, Netherlands	EFFECTS v11.4										
16	Gexcon, Norway	FLACS										
17	GT Science & Software	DRIFT v3.7.19										
18		Britter & McQuaid WB										
19	Hanna Consultants, USA	Gaussian plume model										
20		DRIFT v3.7.12										
21	- HSE, UK	PHAST v8.4										
22	INERIS, France	FDS v6.7										
23	JRC, Italy	ADAM v3.0										
24	NSWC, USA	RAILCAR-ALOHA										
25	Shell, UK	FRED 2022										
26	Syngenta, UK	PHAST v8.61										

30

All Model Results

Future Jack Rabbit III Related Activities

- JRIII Working Groups
 - Source, instrumentation, health and human effects, modelling, emergency response, deposition and surface reactivity, data quality, waterborne
- JRIII model intercomparison exercise on an ammonia incident or JRI ammonia trials
 Kick-off Spring/Summer 2023
- Dry deposition and surface reactivity of ammonia
 ADM C cominar at UKHSA Harwoll UK in 20232
 - ADMLC seminar at UKHSA, Harwell, UK in 2023?
- ADMLC webinar on "Dense gas dispersion modelling in complex terrain, with a focus on carbon dioxide pipelines", 7 March 2023
 - <u>https://admlc.com/events/</u>

Thank you

- Contact: simon.gant@hse.gov.uk
- those of the authors alone and do not necessarily reflect HSE policy

The contents of this presentation, including any opinions and/or conclusions expressed, are

